Chidf
Contents |
Purpose
Chi-squared distribution.
Synopsis
- prob = chidf(function,x,a)
Description
Estimates cumulative distribution function (cumulative, cdf), probability density function (density, pdf), quantile (inverse of cdf), or random numbers for a Chi-sqared distribution.
The chi-squared distribution usually models data that are positive (such as the sum of physical measurements). With integer degrees of freedom parameter v, it is equal to the sum of v normally distributed variates. This toolbox does not require that the degrees of freedom be integral and will ignore negative values in a sample. Chi-squared distributions have variance equal to twice the mean.
Inputs
- function = [ {'cumulative'} | 'density' | 'quantile' | 'random' ], defines the functionality to be used. Note that the function recognizes the first letter of each string so that the string could be: [ 'c' | 'd' | 'q' | 'r' ].
- x = matrix in which the sample data is stored, in the interval (0,inf).
- for function=quantile - matrix with values in the interval (0,1).
- for function=random - vector indicating the size of the random matrix to create.
- a = degrees of freedom parameter (positive integer).
Note: If inputs (x, a, and b) are not equal in size, the function will attempt to resize all inputs to the largest input using the RESIZE function.
Note: Functions will typically allow input values outside of the acceptable range to be passed but such values will return NaN in the results.
Examples
Cumulative
>> prob = chidf('c',[3.7942 4.6052],2) prob = 0.8500 0.9000 >> x = 0:0.1:8; >> plot(x,chidf('c',x,2),'b',x,chidf('c',x,0.5),'r')
Density
>> prob = chidf('d',[3.7942 4.6052],2) prob = 0.0750 0.0500 >> x = 0:0.1:8; >> plot(x,chidf('d',x,2),'b',x,chidf('d',x,0.5),'r')
Quantile
>> prob = chidf('q',[0.85 0.9],2) prob = 3.7942 4.6052
Random
>> prob = chidf('r',[4 1],2) prob = 0.1023 2.9295 0.9990 1.4432
See Also
betadr, cauchydf, expdf, gammadf, gumbeldf, laplacedf, logisdf, lognormdf, normdf, paretodf, raydf, triangledf, unifdf, weibulldf