PLS_Toolbox Documentation: triangledf< tdf unifdf >

triangledf

Purpose

Triangle distribution.

Synopsis

 

prob = triangledf(function,x,a,b,c)

Description

Estimates cumulative distribution function (cumulative, cdf), probability density function (density, pdf), quantile (inverse of cdf), or random numbers for a Triangle distribution.

This distribution is usually used for rough models of data and is triangular in shape (hence the name).

INPUTS:

           function =   [ {'cumulative'} | 'density' | 'quantile' | 'random' ], defines the functionality to be used. Note that the function recognizes the first letter of each string so that the string could be: [ 'c' | 'd' | 'q' | 'r' ].

                         x =   matrix in which the sample data is stored (-inf,inf).

                                                       quantile - interval (0,1).

                                 random - vector indicating the size of the random matrix to create.

                         a =   "min" parameter (real, <= mode).

                         b =   "max" parameter (real, >= mode).

                         c =   "mode" parameter (real, >= min and <=max).

Note: If inputs (x, a, b, and c) are not equal in size, the function will attempt to resize all inputs to the largest input using the RESIZE function.

Note: Functions will typically allow input values outside of the acceptable range to be passed but will convert them to NaN.


Examples

Cumulative:

 

>> prob = triangledf('c',2,1,3,2)

prob =

    0.5000

 

>> x    = [0:0.1:10];

>> plot(x,triangledf('c',x,1,3,2),'b-',x,triangledf('c',x,1,5,3),'r-')

Density:

 

>> prob = triangledf('d',2,1,3,2)

prob =

    1.0000

 

>> x    = [0:0.1:10];

>> plot(x,triangledf('d',x,0,3,0),'b-',x,triangledf('d',x,1,3,2),'r-')

Quantile:

 

>> prob = triangledf('q',0.5,1,3,2)

prob =

    2.0000

Random:

 

>> prob = triangledf('r',[4 1],1,3,2)

ans =

    2.2817

    1.9431

    2.1094

    2.2585

See Also

betadf, cauchydf, chidf, expdf, gammadf, gumbeldf, laplacedf, lognormdf, logisdf, normdf, paretodf, raydf, unifdf, weibulldf


< tdf unifdf >