PLS_Toolbox Documentation: normdf< lognormdf paretodf >

 

normdf

Purpose

Normal / Gaussian distribution.

Synopsis

 

prob = normdf(function,x,a,b)

Description

Estimates cumulative distribution function (cumulative, cdf), probability density function (density, pdf), quantile (inverse of cdf), or random numbers for a Normal distribution.

This distribution is used for many data types including physical attributes and sums of quantities. It is a symmetric distribution and the variance can be smaller, equal, or larger than the mean.

INPUTS:

           function =   [ {'cumulative'} | 'density' | 'quantile' | 'random' ], defines the functionality to be used. Note that the function recognizes the first letter of each string so that the string could be: [ 'c' | 'd' | 'q' | 'r' ].

                         x =   matrix in which the sample data is stored, in the interval (-inf,inf).

                                 for function=quantile - matrix with values in the interval (0,1).

                                 for function=random - vector indicating the size of the random matrix to create.

                         a =   mode/location parameter (real).

                         b =   scale parameter (real and positive).

Note: If inputs (x, a, and b) are not equal in size, the function will attempt to resize all inputs to the largest input using the RESIZE function.

Note: Functions will typically allow input values outside of the acceptable range to be passed but such values will return NaN in the results.


Examples

Cumulative:

 

>> prob = normdf('c',[1.9600 2.5758])

ans =

    0.9750    0.9950

 

>> x = -5:.1:5;

>> plot(x,normdf('c',x,0,1)), vline([ 0 ; normdf('q',[0.975; 0.995],0,1)])

Density:

 

>> prob = normdf('d',[1.9600 2.5758],0,1)

ans =

    0.0584    0.0145

 

>> x = -5:.1:5;

>> plot(x,normdf('d',x,0,1)), vline([0; normdf('q',[0.975; 0.995],0,1)])

Quantile:

 

>>                                 

ans =

    1.9600    2.5758

Random:

 

>> prob = normdf('r',[4 1],0,1)

ans =

   -0.4326

   -1.6656

    0.1253

    0.2877

See Also

betadf, cauchydf, chidf, expdf, gammadf, gumbeldf, laplacedf, lognormdf, logisdf, paretodf, raydf, triangledf, unifdf, weibulldf


< lognormdf paretodf >