![]() |
![]() |
|
PLS_Toolbox Documentation: normdf | < lognormdf | paretodf > |
normdf
Purpose
Normal / Gaussian distribution.
Synopsis
prob = normdf(function,x,a,b)
Description
Estimates cumulative distribution function (cumulative, cdf), probability density function (density, pdf), quantile (inverse of cdf), or random numbers for a Normal distribution.
This distribution is used for many data types including physical attributes and sums of quantities. It is a symmetric distribution and the variance can be smaller, equal, or larger than the mean.
INPUTS:
Note: If inputs (x, a, and b) are not equal in size, the function will attempt to resize all inputs to the largest input using the RESIZE function.
Note: Functions will typically allow input values outside of the acceptable range to be passed but such values will return NaN in the results.
Examples
Cumulative:
>> prob = normdf('c',[1.9600 2.5758])
ans =
0.9750 0.9950
>> x = -5:.1:5;
>> plot(x,normdf('c',x,0,1)), vline([ 0 ; normdf('q',[0.975; 0.995],0,1)])
Density:
>> prob = normdf('d',[1.9600 2.5758],0,1)
ans =
0.0584 0.0145
>> x = -5:.1:5;
>> plot(x,normdf('d',x,0,1)), vline([0; normdf('q',[0.975; 0.995],0,1)])
Quantile:
>>
ans =
1.9600 2.5758
Random:
>> prob = normdf('r',[4 1],0,1)
ans =
-0.4326
-1.6656
0.1253
0.2877
See Also
betadf, cauchydf, chidf, expdf, gammadf, gumbeldf, laplacedf, lognormdf, logisdf, paretodf, raydf, triangledf, unifdf, weibulldf
< lognormdf | paretodf > |