![]() |
![]() |
|
PLS_Toolbox Documentation: paretodf | < normdf | raydf > |
paretodf
Purpose
Pareto distribution.
Synopsis
prob = paretodf(function,x,a,b)
Description
Estimates cumulative distribution function (cumulative, cdf), probability density function (density, pdf), quantile (inverse of cdf), or random numbers for a Pareto distribution.
This distribution is commonly used to model financial data (especially insurance data). It is skewed to the right and the variance may be smaller, equal, or larger than the mean. Negative values in the sample are ignored.
INPUTS:
Note: If inputs (x, a, and b) are not equal in size, the function will attempt to resize all inputs to the largest input using the RESIZE function.
Note: Functions will typically allow input values outside of the acceptable range to be passed but such values will return NaN in the results.
Examples
Cumulative:
>> prob = paretodf('c',2,1,2)
prob =
0.7500
>> x = [0:0.1:10];
>> plot(x,paretodf('c',x,1,2),'b-',x,paretodf('c',x,3,7),'r-')
Density:
>> prob = paretodf('d',2,1,1)
prob =
0.2500
>> x = [0:0.1:10];
>> plot(x,paretodf('d',x,2,1),'b-',x,paretodf('d',x,0.5,1),'r-')
Quantile:
>> prob = paretodf('q',0.5,1,2)
prob =
1.4142
Random:
>> prob = paretodf('r',[4 1],2,1)
ans =
40.1037
2.6012
5.0870
3.8909
See Also
betadf, cauchydf, chidf, expdf, gammadf, gumbeldf, laplacedf, lognormdf, logisdf, normdf, raydf, triangledf, unifdf, weibulldf
< normdf | raydf > |