PLS_Toolbox Documentation: knn< jmlimit lamsel >

knn

Purpose

K-nearest neighbor classifier.

Synopsis

 

pclass = knn(xref,xtest,k,options)

Description

Performs kNN classification where the "k" closest samples in a reference set vote on the class of an unknown sample based on distance to the reference samples. If no majority is found, the unknown is assigned the class of the closest sample (see input options for other no-majority behaviors).

INPUTS:

                   xref =   a DataSet object of reference data,

                 xtest =   a DataSet object or Double containing the unknown test data.

OPTIONAL INPUTS:

                       k  =   number of components {default = rank of X-block}, and

OUTPUTS:

               pclass =   an optional number of neighbors to use in vote for class of unknown {default = 3}. If k=1, only the nearest sample will define the class of the unknown.

Options

        options  = structure array with the following fields :

        display:   [ 'off' | {'on'} ] governs level of display to screen.

  preprocessing:   { [ ] } A cell containing a preprocessing structure or  keyword (see PREPROCESS). Use {'autoscale'} to perform autoscaling on reference and test data.

     nomajority:   [ 'error' | {'closest'} | class_number ] Behavior when no majority is found in the votes. 'closest' = return class of closest sample. 'error' = give error message. class_number (i.e. any numerical value) = return this value for no-majority votes (e.g. use 0 to return zero for all no-majority votes)

See Also

analysis, cluster, plsda, simca


< jmlimit lamsel >