PLS_Toolbox Documentation: savgolcv< savgol scale >

savgolcv

Purpose

Cross-validation for Savitsky-Golay smoothing and differentiation.

Synopsis

 

cumpress = savgolcv(x,y,lv,width,order,deriv,ind,rm,cvi,pre); %for x class "double"

cumpress = savgolcv(x,y,lv,width,order,deriv,[],rm,cvi,pre);  %for x class "dataset"

Description

SAVGOLCV performs cross-validation of Savitsky-Golay parameters: filter width, polynomial order, and derviative order.

INPUT:

            x =   M by N matrix of predictor variables with ROW vectors to be smoothed (e.g. spectra), and

            y =   M by P matrix of predicted variables.

OPTIONAL INPUTS:

          ind =   indices of columns of x to be used for calibration {default ind = [1:n] i.e. all x columns}.

The following are optional Savitsky-Golay parameters (calls SAVGOL). By entering a vector, instead of a scalar, these variables are cross-validated.

        width =   number of points in filter {default width = [11 17 23]}.

        order =   polynomial order {default order = [2 3]}.

        deriv =   derivative order {default deriv = [0 1 2]}.

The following are optional cross-validation parameters (calls CROSSVAL).

           lv =   maximum number of LVs {default lv = min(size(x))}.

           rm =   regression method. Options are: rm = 'nip', PLS via NIPALS algorithm; rm = 'sim', PLS via SIMPLS algorithm {default}, and rm = 'pcr', uses PCR.

          cvm =   cross-validation method. Options are: cvm = 'loo', leave-one-out, cvm = 'vet', venetian blinds {default}, cvm = 'con', contiguous blocks, and cvm = 'rnd', repeated random test sets.

        split =   number of subsets to split the data into {default = 5} and is required for cvm = 'vet', 'con', or 'rnd'.

         iter =   number of iterations {default = 5} and is required for cvm = 'rnd'.

           mc =   0 supresses mean centering of subsets {default mc = 1}.

OUTPUT:

The output is a 4 dimensional array with each dimension corresponding to one of the directions cross-validated over.

cumpress(i,:,:,:) =   derivative dimension,

cumpress(:,j,:,:) =   latent variable dimension,

cumpress(:,:,k,:) =   window width dimension, and

cumpress(:,:,:,l) =   polynomial order dimension.

See Also

baseline, crossval, lamsel, mscorr, savgol, specedit, stdfir


< savgol scale >