PLS_Toolbox Documentation: mdcheck< mcr medcn >

mdcheck

Purpose

Missing Data Checker and infiller.

Synopsis

 

[flag,missmap,infilled] = mdcheck(data,options)

options = mdcheck('options')

Description

This function checks for missing data and infills it using a PCA model if desired. The input is the data to be checked data. Optional input options is described below.

Outputs are the fraction of missing data flag, a map of the locations of the missing data as an unint8 variable missmap, and the data with the missing values filled in infilled.

Options

             options =   a structure array with the following fields:

                     name:   'options', name indicating that this is an options structure,

      options.frac_ssq:   [{0.95}] desired fraction between 0 and 1 of variance to be captured by the PCA model,

        options.max_pcs:   [{5}] maximum number of PCs in the model, if 0, then it uses the mean,

options.meancenter:   ['no' | {'yes'}], tells whether to use mean centering in the algorithm,

options.recalcmean:   ['no' | {'yes'}], recalculate mean center after each cycle of replacement (may improve results for small matricies,

        options.display:   [{'off'} | 'on'], governs level of display,

    options.tolerance:   [{1e-6  100}] convergence criteria, the first element is the minimum change and the second is the maximum number of iterations,

options.max_missing:   [{0.4}] maximum fraction of missing data with which MDCHECK will operate, and

    options.algorithm:   [ {'svd'} | 'nipals' ] specified the missing data algorithm to use, NIPALS typically used for large amounts of missing data or large multi-way arrays.


Note: MDCHECK captures up to options.frac_ssq of the variance using options.max_pcs or fewer PCA components.

The default options can be retreived using: options = mdcheck('options');.

See Also

parafac, pca


< mcr medcn >